BrachyView, a novel inbody imaging system for HDR prostate brachytherapy: design and Monte Carlo feasibility study.

نویسندگان

  • M Safavi-Naeini
  • Z Han
  • D Cutajar
  • S Guatelli
  • M Petasecca
  • M L F Lerch
  • D R Franklin
  • J Jakubek
  • S Pospisil
  • J Bucci
  • M Zaider
  • A B Rosenfeld
چکیده

PURPOSE High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 × 60 mm(2) silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project. METHODS Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a (192)Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location. RESULTS Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in the estimated projection position was found to be 0.95 mm in the imaging (detector) plane, resulting in a maximum source positioning estimation error of 1.48 mm. CONCLUSIONS HDR BrachyView is a feasible design for real-time source tracking in HDR prostate brachytherapy. It is capable of resolving the source position within a subsecond dwell time. In combination with anatomical information obtained from transrectal ultrasound imaging, HDR BrachyView adds a significant quality assurance capability to HDR brachytherapy treatment systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo investigation on precise dosimetry of HDR breast brachytherapy with Accuboost

Introduction: Accuboost is a HDR brachytherapy system in early stages breast cancer treatment. This device provides a completely noninvasive procedure with parallel-opposed radiation from two immobilizing peripheral applicators that caused it a preferred option of modalities to choose. In most commercial treatment planning systems, tissues are considered as a simple water phan...

متن کامل

Accuracy Evaluation of Oncentraâ„¢ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computat...

متن کامل

Monte Carlo characterization of 169Yb as a high‐dose‐rate source for brachytherapy application by FLUKA code

Higher initial dose rate and simplifying HDR room treatment of 169Yb element among other brachytherapy sources has led to investigating its feasibility as high-dose-rate seed. In this work, Monte Carlo calculation was performed to obtain dosimetric parameters of 169Yb, Model M42 source at different radial distances according to AAPM TG-43U1 and HEBD Report about HDR sources in both air vacuum a...

متن کامل

Evaluate Shielding Design of the Brachytherapy Unit by Using Monte Carlo Simulation Code

Shielding design is necessary for brachytherapy treatment room in order to protect the general public and employees. The main objective of this study was to investigate whether the protective unit of our Brachytherapy Centre provided adequate protection to the health and safety assessment of radiobiological impact. In this study, we estimated the effect of radiobiological protection from a sing...

متن کامل

Design and Implementation of a Complementary Treatment Planning Software for the GZP6 HDR Brachytherapy System (GZP6 CTPS)

Introduction: Brachytherapy is one of the most common treatment modalities for gynecological cancer. The GZP6 brachytherapy system is one of the devices utilized in Iran. It has been considered particularly due to its low cost compared to other more complete and established systems. This system has some deficiencies including lack of a treatment planning software for non-predefined treatments, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 40 7  شماره 

صفحات  -

تاریخ انتشار 2013